
profiling; F 0, area of the initially smooth surface, m2; Fp, area of the profiled surface, m2; Cf, local friction coefficient; St, 

Stanton number; Re**, Re T , Reynolds numbers over the thickness of momentum and energy loss. 
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ANALOG OF THE RAYLEIGH EQUATION FOR THE PROBLEM 

OF BUBBLE DYNAMICS IN A TUBE 

Yu. B. Zudin UDC 536.248.2.001.5 

Analysis is made o f  the growth o f  a vapor (gas) bubble in a horizontal tube filled with an ideal liquid. 

As is well known [1], the dynamics of a gas (vapor) bubble in an unrestricted volume of an ideal liquid is described by 

the Rayleigh equation 

P"-P  _ 3 

/3 9 " 2 (1) 

For the problem of bubble growth in a tube, vital for a number of applications connected with boiling, the "spherical" equation 

(1) is inapplicable in the general case. The present work gives the derivation of a "cylindrical" analog for the Rayleigh equation 

(1). 

We consider first the case of expansion of a spherical bubble in the symmetry center of a horizontal tube with radius R 0 

and length 2l (Fig. la). We obtain the pressure difference between the bubble P"(t) and the liquid at the outlet from the tube 

Po~ = const by integrating the z-projection of a momentum equation for z at r = 0 going from z = R (bubble surface) to z = l 

(outlet from the tube): 
l 

P" - -  P~  __ 1 2 Ou dz. 
9 2 ( U z - - u Z R ) + J "  Ot (2) 

R 

To calculate the right side of Eq. (2) we consider the velocity field from a point mass source at the axis of an infinite tube [2]. 

The velocity potential ~o and the longitudinal velocity u at the axis z (for r = 0) of the flow are written in the form 

_ ~ _ 1 1 ~ K.~ (8) cos (sz) ds, (3) 
u 2z ~ o J la (8) 
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,( 
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Fig. 1. Chart  of  gas (vapor) bubble  growth in a tube: a) symmetric case; 

b) nonsymmetr ic  case. 

- u 1 i f s  (8) I t  ~ - - -  u 273 ~- - '  e sin (87) d8. a -  t , (8)  (4) 

Here 2 = z/R 0 is the dimensionless longitudinal  coordinate  and uo~ is the uniform flow velocity, as 2 -* • (asymptotic source 

velocity); Ii(e ) and Kl(e  ) are the modified Bessel functions of the first and second kind, respectively [3]. As Z --, ~ ,  from (3), (4) 

we have 

1 - I 

22 233 

To determine the asymptotic form of ~b, when 2 --, _ 0% we will calculate from (3) the even derivatives o f  ~(2n)(2) and add them 

termwise with the weight factors a n so that, as a result, we can obta in  in the right side the tabulated integral [4]: 

2 (1 +T31 x/2 
When Z --> 0% we obta in  the infini te-order  uniform differential equation:  

having the solut ion 

/ 

n ~ 0  

w 

q~ (Z) .~ s bne -~ n z .~ bl e-cqz , (6) 
n ~ l  

where a n are the zeros of the Bessel funct ion J l ( ~ n ) ,  s o  a I = 3.832. For  estimates we use the in terpola t ion  relat ion for velocity 

potential,  exact in asymptotic forms, as ~ ~ 0 and ~ --- oo: 

e~,-1 (7) 

Calculating the right side of the m o m e n t u m  equat ion (2) with (7) and est imating the terms for R0/l <<  1, we obta in  

i '  0)2t "[ ( )  - - u z  l - b  u7 1 R 4i  
T I T  + T  1 - - T  T o  I (8) 

The liquid velocity at the out le t  from the tube u l is connected with the bubble  growth velocity R = dR/dt by the balance of 

source mass 
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2R2R (9) 
b / l - -  9 

R8 

The substitution of u t from (9) into (8) gives the desired analog of the Rayleigh equation for the case of spherical bubble growth 

in the symmetry center of a tube filled with liquid: 

-- -t- - - ~ -  (2R ~ q- RR). (10) 

For the case of constant pressure difference (AP = P" - P~ = const) Eq. (10) has the exact solution 

3 R2 { [ 1 +  I . /  2 AP { 4tt ~12/8 } 
R 8 l - 3 P t - - ~ - - i  - -  1, . (11) 

For RI/R02 <_ 1 (initial stage of growth), from (11) the well-known "Rayleigh" law of growth [1] follows: 

2 AP  I. (12) 
R =  I//'" 3 9 

For sufficiently large values of the parameter l/R >> 1 ("long tubes") the "Rayleigh" stage of growth covers a negligible portion 

of the total time (until the whole section of the tube is filled with the bubble). The solution of (12) yields 

R = ~ - ~  Rot,) . (13) 

Analyzing the solution (11) permits, for RI/R02 >_ 1 and I/R 0 >> 1, confinement to the following asymptotic form of Eq. (8): 

AP ,~ Ot'd. (14) 

Expression (14) permits generalization of the solution of (10) to the general case of bubble growth on the tube wall at different 

distances from the outlets l 1 r l 2 (Fig. lb). Thus, instead of the symmetric case (8), we will have two equalities 

AP.  = l,,ti& = 12[~t2, (15) 
9 

taking the source mass balance into account 

2R~R 
u& q- ut, -- 9 (16) 

- R8 

we obtain the "cylindrical" analog of the Rayleigh equation: 

AP _ 2Rl . . (2R ~ q_ RR),  (17) 
o Ro 

where l. = 1112](l 1 + 12)" For I 1 = l 2 = l we obtain the symmetric case (10), considered above. 
The Rayleigh equation analog (17) may be used in calculating the dynamics of spherical bubbles in long tubes. We shall 

note that the above-developed approach permits us to take account of the influence of liquid viscosity and channel orientation 

on the bubble dynamics. 

NOTATION 

P", pressure in bubble; P~, pressure at infinity; R, bubble radius; z, r, longitudinal and radial coordinates; t, time; ~,, 

velocity potential; u/, liquid velocity at the outlet from the tube; R0, tube radius; ll, 12, distances from the bubble coordinates to 

the outlets from the tube. 
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STABILITY OF NONISOTHERMAL FLOW OF A VISCOUS LIQUID 

IN A N  A N N U L A R  C H A N N E L  

I. M. Tumin UDC 532.516 

In nonisothermal flow of  a viscous liquM in an annular channel between coaxial cylinders where the outer cylinder 

has finite dimensions and is stationary, and the inner cylinder infinitely moves along the axis, the central position of 

the latter is unstable. 14/hen superimposing a thermal field, principally it is possible to create as large a force as 

required which holds the inner cylinder exactly on center. 

Two coaxial cylinders with a liquid between them are considered. A similar system is often met with in various fields of 

engineering [1, 2]. In particular, they are a matter of practical interest in technology of polymer coatings when the inner infinite 

cylinder (fiber) moves in the direction of its axis and the outer cylinder of finite dimensions acts as a gauging device. A polymer 

solution is fed to the gauge inlet, and at the outlet this solution is entrained by the fiber forming a polymer coating on it. The 

important parameters of such a process are the thickness of a polymer film on the fiber and its uniformity. 

In this problem the gap between the inner and outer cylinders may act as a perturbation which makes it possible to 

obtain, by approximate methods, analytical expressions for characterizing the system. 

1. We consider the general case of nonisothermal stationary nonaxisymmetric motion of a viscous liquid in an annular 

channel between cylinders when the outer one has a cone shape. To simplify the problem, we make the usual assumptions of 

developed flow [3, 4]. The liquid viscosity is dependent on temperature [5]. In the final analysis we consider the system of 
equations 

aP 
- -  o; (1) 

Or 

eP ( O~V~ < k aT < ) (2) 
Oz = t*o . ~ r  2 q- rOr To Or Or ; 

dP (O2Vm OVr V~ te OT ( O V .  V,~ ) )  
. . . . . . . . .  ; (3) r&p ~*o Or 2 -k r& r z To dr Or r . ,  

av~ § av~ v~ ov~ 
Oz T + -  + - 0 ;  r raq~ 

c (V~ OT V aT "1 02T OT 

rot , 

(4) 

(s)  

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 63, No. 1, pp. 32-37, July, 1992. Original article submitted August 
2O, 1991. 
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